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BENFORD LAW, significant-digit law, first-digit law
- A probability distribution on the significant digits
of real numbers named after one of the early researchers,
[1]. Letting {D,}32, denote the (base-10) significant

digit functions (on R\{0}), i.e.,
D, (z) = nth significant digit of z
(s0, e.g., D1(0.0304) = D;(304) = 3, D(0.0304) = 0,

etc.), Benford's law is the logarithmic probability distri-
bution P given by

1) (first digit law)
P(D; =d) =logio(1+d7!), d=1,....,9

2) (second digit law)
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‘9

P(Dz=d) = logo (1+ (10k+d)7"),
k=1
d=0,...,9

3) (general digit law)

P(D1 Zdl,...

k -1
=logyo |1+ (Z d; - 10"—")
i=1

for all k € N, d; € {1,...,9} and d; € {0,...
i=2.. .k

An alternate form of the general law 3) is

79}a

4) P(mantissa < t/10) = log,,t for all ¢ € [1,10).

Here, the mantissa (base 10) of a positive real number
« is the real number r € {1/10,1) with = r - 10" for
some n € Z; e.g., the mantissas of both 304 and 0.0304
are 0.304.

More formally, the logarithmic probability mea-
sure P in 1)-4) is defined on the measurable space
(R, M), where R* is the set of positive real numbers
and M is the (base-10) mantissa sigma algebra, i.e., the
sub-sigma-algebra of the Borel o-algebra generated by
the significant digit functions {D,,}32, (or, equivalently,
generated by the single function z — mantissa(z)). In
some combinatorial and number-theoretic treatises of
Benford’s law, R* is replaced by N, and P by a finitely-
additive probability measure defined on all subsets of
N.

Empirical evidence of Benford’s law in numerical data
has appeared in a wide variety of contexts, including
tables of physical constants, newspaper articles and al-
manacs, scientific computations, and many areas of ac-
counting and demographic data (see [1], (5], [6], [7]),
and these observations have led to many mathematical
derivations based on combinatorial (e.g., [2]), analytic
([3], [8]), and various urn-scheme arguments, among oth-
ers (see 7] for a review of these ideas).

Benford’s law P can also be characterized by several
invariance properties, such as the following two. Say that
a probability measure P on the mantissa space (RT, M)
is scale-invariant if P(sS) = ﬁ(S) for every S € M and
s > 0, and is base-invariant if P(SY/™) = P(S) for every



S € M and n € N. Letting P denote the logarithmic
probability distribution given in 1)-4), then (see [4])

e P is the unique probability on (R*, M) which is
scale-invariant;

e P is the unique atomless probability on (R*, M)
which is base-invariant.

A statistical derivation of Benford’s law in the form
of a central limit-like theorem (cf., e.g., Central limit
theorem) characterizes P as the unique limit of the
significant-digit frequencies of a sequence of random
variables generated as follows. First, pick probability
distributions at random, and then take random samples
(independent, identically distributed random variables)
from each of these distributions. If the overall process is
scale- or base-neutral (see [5]), the frequencies of occur-
rence of the significant digits approach the Benford fre-
quencies 1)-4) in the limit almost surely (i.e., with prob-
ability one; cf. also Convergence, almost-certain).

There is nothing special about the decimal base in
1)-4), and the analogue of Benford’s law 4) for general
bases b > 1 is simply

t
Prob(mantissa <base b) < 5) = log, ¢

for all ¢ € [1,b).

Applications of Benford’s law have been given to de-
sign of computers, mathematical modelling, and detec-
tion of fraud in accounting data (see [5], [7]).
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BENJAMIN-FEIR INSTABILITY - In his 1847 pa-
per, G.G. Stokes proposed the existence of periodic
wave-trains in non-linear systems. In the case of waves
on deep water, the first two terms in the asymptotic
expansion employed by Stokes are given by

n(z,t) = acos(() + %ka2 cos(2¢),

where ¢ = kz —wt and w? = gk(1+k%a?). Not everyone
was convinced that the series converges.and therefore
that periodic waves actually exist. Convergence of the
series for waves on infinitely deep water was finally es-
tablished in 1925 by T. Levi-Civita and extended the
next year to waves on water of finite depth by D.J.
Struik (a brief history is given by [4]). With the existence
of the Stokes wave established, it is quite remarkable
that no one noticed its instability, until T.B. Benjamin
and J.E. Feir during the 1960s (see, e.g., [4], [5]).

Adding perturbations with frequencies close to the
carrier frequency w, of the form

€(z,t) = €4 exp(§t) coslkz — w(1 + 8)t] +
+e_ exp(t) coslkr — w(l — 8)t],

Benjamin and Feir used a linearized analysis to show
that

1
Q= 55(\/ 2k2%a? — §2)w.

Thus, the perturbations grow exponentially provided
0 <6< V2ka.

It is important to note that the instability is controlled
by the wave-number k and the amplitude a of the carrier
wave (larger values of ka allow more unstable ‘modes”
&, thus enhancing the instability).

One practical implication of the Benjamin—Feir insta-
bility is the disintegration of periodic wave-trains on suf-
ficiently deep water, as demonstrated by their wave tank
experiments (see, e.g., [4]). However, it was experimen-
tally observed [9] that the periodic wave need not always
disintegrate (under certain circumstances the instability
may lead to a Fermi—Pasta-Ulam-type recurrence). This
means that the Benjamin-Feir instability saturates and
that the initial wave-form is (approximately) regained
after a while.

This whole process is best understood by investigat-
ing the normalized non-linear Schrédinger equation,

iAy+ Az +2]A17 A =0,

which describes the evolution of weakly non-linear wave
envelopes on deep water, among other things (for a gen-
eral introduction see [3]). This equation also has the
distinction that it is completely integrable and that it
allows soliton solutions. H.C. Yuen and B.M. Lake [9]
observed soliton interactiotis in wave tank experiments,
which demonstrates that the non-linear Schrédinger
equation provides a qualitatively satisfactorily descrip-
tion of the long-time evolution of wave packets.

The non-linear Schrédinger equation also exhibits the
Benjamin-Feir instability and was used in [8] to study
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